PROPOSICIONES
Las entidades portadoras de los valores de verdad.
Los objetos de las creencias y de otras actitudes proposicionales.
El significado de las oraciones declarativas o enunciativas, como «el Sol es una estrella».
Intuitivamente una proposición expresa un contenido semántico a la que, bajo cierto procedimiento acordado o prescrito, es posible asignarle un valor de verdad (usualmente "verdadero" o "falso", aunque en lógica formal se admiten otros valores de verdad diferentes).
Una proposición es una cadena de signos expresados en un determinado lenguaje. En un lenguaje natural, esos signos usualmente son sonidos o caracteres escritos, mientras que un tipo de lenguaje formalizado pueden ser signos arbitrarios.
Dado que los lenguajes son tipos de estructuras combinatorias que admitidamente pueden representar entidades de la realidad, se admite que las proposiciones son cadenas de signos a las que es posible emparejar con objetos reales. Es importante notar que lo que hace de una cadena de signos una proposición, es que sea interpretable (ya que existen por ejemplo cadenas de signos u oraciones de un lenguaje que carecen de un referente o interpretación bien definidos).
Lógica
En lógica tradicional se distinguen la proposición y el juicio, por cuanto la primera es el producto lógico del acto por el cual se afirma o se niega algo de algo, mientras ese acto constituye el juicio. Para Aristóteles, la proposición es un discurso enunciativo perfecto, que se expresa en un juicio que significa lo verdadero y lo falso como juicio de términos. Por eso el juicio es una afirmación categórica, es decir, incondicionada porque representa adecuadamente la realidad.
En lógica formal se identifica una proposición lógica con una fórmula bien formada usando los símbolos del alfabeto que caracteriza al lenguaje formal que se esté empleando. Las reglas de buena formación garantizan que la proposición sea interpretable en términos de verdad o en un modelo formal. Las fórmulas mal formadas de hecho no pueden tener valor de verdad ya que no existe garantías de que sean interpretables y por tanto puedan tener un valor de verdad.
Proposición lógica y valores de verdad
El valor de verdad de una proposición lógica atómica (o variable proposicional) en lógica bivalente es, por definición, verdadero o falso (podemos representarlo como V o F). En lógica polivalente pueden existir más valores de verdad además de V o F. Por ejemplo en lógica difusa el valor de verdad de una proposición se representa por un número del intervalo cerrado [0,1] (nótese que aquí el conjunto de valores de verdad es infinito), este número se interpreta como la probabilidad de que una proposición sea cierta (dado que la probabilidad es un número entre 0 y 1).
Así el enunciado «llueve» es verdadero si y sólo si está lloviendo en ese momento. Pero si dicho enunciado se considera como proposición lógica atómica, p, entonces puede ser tanto verdadera como falsa. Es una verdad de hecho o contingente, porque tiene los dos posibles valores de verdad, por la propia definición de proposición lógica. El contenido de la relación de un enunciado con lo real no es objeto de la lógica sino de otras ciencias.
Verdad de hecho o contingente, contradicción y tautología
El valor de verdad de una proposición molecular puede ofrecer los siguientes casos:
Que su valor dependa del valor de verdad de las proposiciones que la integran, según las conexiones lógicas que las unen. En ese caso dicha proposición tiene un valor de Verdad de hecho o contingente. Puede ser unas veces verdadera y otras veces falsa según la verdad o falsedad de cada una de las proposiciones atómicas que la integran.
El valor lógico V (verdad) de la proposición “llueve y hace calor”, sólo se dará en el caso de que las dos proposiciones “llueve” (p) y “hace calor” (q) sean tomadas en su valor de V; en los demás casos será falsa. Sin embargo en la proposición “llueve o hace calor” basta que una de las dos sea considerada en su valor de verdad V para que la proposición molecular sea verdadera. La función “y” conjuntiva y la función “o” disyuntiva se definen en tablas de verdad, como funciones de verdad, functores o conectivas.
Las dos proposiciones moleculares enunciadas más arriba pueden ser verdaderas o falsas según sean los valores que tomemos en consideración en cada una de las proposiciones que la integran. Por eso ambas son contingentes.
Que su valor de verdad no dependa del valor de verdad de las proposiciones que la forman, sino que, por la forma en que se establecen sus conexiones, como relaciones lógicas, siempre y necesariamente es falsa. Entonces esa proposición es una contradicción.
El valor de verdad de la proposición “llueve y no llueve” es una contradicción y siempre será falsa, con independencia del valor que consideremos V o F de “llueve” (p) y de “no llueve” (¬p). La función de verdad “no” se define mediante una tabla de verdad.
Que su valor de verdad no dependa del valor de verdad de las proposiciones que la forman, sino que, por la forma en que se establecen sus conexiones, siempre y necesariamente es verdadera. Entonces esa proposición es una tautología.
El valor de verdad de la proposición “llueve o no llueve”, es una tautología y siempre será verdadera con independencia de los valores que consideremos de “llueve” (p) o de “no llueve” (¬p).
El análisis del valor de verdad de una proposición se realiza mediante las tablas de verdad.
Las tautologías se constituyen como «leyes lógicas» o «verdades formales» y son la base sobre la que se construyen las reglas de inferencia en el razonamiento o cálculo lógico.
Proposición en lógica matemática
La lógica matemática estudia los sistemas formales, formados por conjuntos de signos y reglas combinatorias definidas axiomáticas, que son interpretables semánticamente. La lógica matemática suele dividirse en cuatro subcampos: teoría de modelos, teoría de la demostración, teoría de conjuntos y teoría de la recursión. En lógica matemática, la noción fundamental es la de lenguaje formal, un lenguaje formal viene definido por tres elementos:
Un conjunto de símbolos o alfabetos, así como reglas combinatorias que definen cuales son las expresiones válidas del lenguaje (llamadas fórmulas bien formadas). Los axiomas son fórmulas bien formadas concretas que se dan como enumeración explícita o como sistema recursivamente enumerable.
Las reglas de inferencia, propias de cada sistema y explícitamente definidas como reglas combinatorias entre proposiciones válidas. Las fórmulas bien formadas y obtenidas recursivamente mediante reglas de inferencias a partir de los axiomas se denominan teoremas del lenguaje formal.
Un conjunto interpretaciones lógicas, que permite asignar valores de verdad a diferentes proposiciones. Una interpretación es una aplicación del conjunto de todas las fórmulas bien formadas (proposiciones) en un modelo. El valor de verdad cada proceso.
No hay comentarios.:
Publicar un comentario